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Ambient Intelligence is nowadays an active research field. As a key part of this concept, learning
architectures for the control of the devices in an intelligent building must be developed, where the
goal is to control the environment via a set of devices using an intelligent agent which should
work in a non-intrusive manner to satisfy the preferences of the user. Mainly, we have focused
our attention over fuzzy logic controllers (FLC) for the internal structure of the agent. The main
motivation for the work described in this paper is to check different alternatives in order to select
a suitable method for the off-line data driven automatic generation of FLC for the agent. We have
performed the experiments with real data gathered from the Essex Intelligent Dormitory.
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1. INTRODUCTION

Ambient Intelligence (AmI)1 is nowadays an active
research field. AmI deals with the development of a new
paradigm where people are immersed in a digital envi-
ronment that is aware of their presence and context, and
which is sensitive, adaptive and reactive to their desires,
habits, and emotions.

AmI builds on three key concepts: Ubiquitous Comput-
ing (integration of computers in daily objects), Ubiqui-
tous Communication and Intelligent User Interfaces (voice,
gestures). Nevertheless, to give a device (e.g. a lamp) pro-
cessing and communication capabilities do not make it
intelligent. A key concept to answer in AmI is how the sys-
tem can learn about the user behaviors, and be constantly
adapted to them. Autonomous adaptive learning systems
must be developed to respond to user preferences and
desires. There is a great deal of current research activity in
Ambient Intelligence.2–9 However they primarily focus on
intelligent tracking and user interaction, sensing, planning,
and time independent context and there is no great empha-
sis on such learning mechanisms.

The design of generic learning systems for ambient
intelligent spaces could be quite challenging. Different
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scenarios (e.g., industry, workplace, home, machine to
machine interaction, etc.) present special characteristics
that could imply a specific design. In particular, intelligent
buildings present a unique and specific set of character-
istics and the aim of our research is to contribute to the
development of intelligent mechanisms to address those
characteristics.

Our goal in intelligent buildings is to control the environ-
ment via a set of devices using an intelligent agent which
should work in a non-intrusive manner to satisfy the pref-
erences of the user. The agent should observe the user’s
interaction with the building and learn how to preempt
them automatically from the information provided by a set
of environmental sensors (temperature, humidity, etc.) and
by the states of the actuators (buttons, heaters, etc.).

We divide the life cycle of the agent in two main phases.
In the first phase, the agent simply learns the user’s desires
and behaviors. It begins by compiling enough informa-
tion about his behavior with a sampling process where the
information provided by the environmental sensors and the
corresponding actuator’s states are stored (we have sam-
pled the environment for three consecutive days in our
experiments). Then the agent adapts his internal structures
to fit the underlying knowledge hidden in the sampled
data. In the second phase, the agent is used to control the
intelligent environment on behalf of the user. It constantly
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checks the information provided by the environmental sen-
sors and decides in each situation the state for the envi-
ronmental actuators in the basis of the learned knowledge.
Nevertheless, the user necessities and desires can change
over time. So, the agent should be capable of re-adapt
his internal structures to reflect the user’s behavioral drifts
over time. In our experiments, the agent is aware of a
change in the user behavior as the user is allowed to
override an agent decision at any moment. Whenever this
happens, it reflects a local conflict between the agent’s
decision and the user’s desires and the agent should take
the proper actions to correct this malfunction.

Mainly, we have focused our attention over fuzzy logic
controllers (FLC) for the internal structure of the agent
for two principal reasons. Imprecision is inherent in the
sensor measurements and the user’s management of the
actuators in the environment. This way, FLC seem to be
a good alternative because imprecision handling is a key
feature of the approach. Also, fuzzy controllers are one
of the easiest structures to interpret by a human reader.
This could allow one to test if the controller is working
properly, performing operations that really reflect the user
behavior.

The main motivation for the work described in this
paper is to check different alternatives in order to select a
suitable method for the automatic generation of FLC for
the agent in the initial learning phase. Nevertheless, we
will have always in mind the online adaptation necessary
in the second phase when discussing about the validity of

Fig. 1. The iDorm general overview (top row). The iFridge, a refrigerator with internet capabilities hosting the intelligent agents to control the iDorm
(center row). Different possibilities to interface the intelligent agent: SNAP controller (left), PDA interface (center), mobile phone interface right
(bottom row).

the compared approaches for the real implementation of
the intelligent agent.

From the wide spectrum of alternatives, we have
selected (and adapted when necessary) for comparison
several well known methods for the induction of rules
from data like those based on the combination of genetic
algorithms and fuzzy rule based systems (genetic-fuzzy
systems),10 Adaptive-Network-based Fuzzy Inference Sys-
tems (ANFIS),11 and methods previously proposed that
have shown to perform well on the target problem like
AOFIS (Adaptive Online Fuzzy Inference System).12 We
include also results where Multilayer Perceptron neural
networks (MLP) are used for the internal structure of the
agent in order to check a different alternative for the inter-
nal structure of the agent than that based on FLC.

To validate the comparison, several experiments have
been performed using real data gathered from the Essex
Intelligent Dormitory (iDorm).

2. THE iDORM

The intelligent Dormitory (iDorm) shown in Figure 1 (top)
is situated in the University of Essex. The iDorm is a
real test bed used for conducting research into intelligent
embedded agent technologies. The iDorm is a multi-user
inhabited space that is fitted with a plethora of embedded
sensors, actuators, processors, and heterogeneous networks
that are cleverly concealed (buried in the walls and under-
neath furniture) so that the user is completely unaware
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of the hidden intelligent infrastructure of the room. The
iDorm looks and feels like an ordinary study/bedroom
environment containing a mix of furnishings such as a bed,
work desk, and wardrobe. This splits the room into areas
of different activity such as sleeping, working, and enter-
taining. There is a standard multi-media PC that combines
a flat screen monitor and a multi-media video projector
which can be used for both working and entertainment.

The iDorm is built around three networks, Lonworks,
1-wire (TINI), and IP which provide a diverse infra-
structure allowing the development of network indepen-
dent solutions. A common interface to the iDorm and its
devices is implemented through Universal Plug & Play
(UPnP) which is an event-based communication middle-
ware for allowing devices to be plug & play enabling
automatic discovery and configuration. A gateway server
is used to run the UPnP software devices that interface the
hardware devices on their respective networks. The agent
that controls the intelligent space is built on top of the low
level UPnP control architecture enabling it to communi-
cate with the UPnP devices in the iDorm and thus allowing
it to monitor and control these devices.

Any networked embedded computer that can run a stan-
dard Java process can access and control the devices in
the iDorm directly. Our agent system is currently embed-
ded in an internet Fridge (iFridge) located in the iDorm
as shown in Figure 1 (center). The iFridge incorporates
an intelligent embedded user friendly server with touch
screen capability.

Our agent could also be embedded into any other part of
the environment using embedded hardware controllers (see
Fig. 1, bottom) such as the Imsys technologies Simple Net-
work Application Platform (SNAP) (left), portable compu-
tational artefacts that can monitor and control the iDorm
wirelessly such as handheld PDAs (center), or mobile
phones using a WAP interface which is a simple extension
of a web interface (right). This integration of embedded
agents and wireless communications creates the pervasive
transparent infrastructure that is characteristic of an Ambi-
ent Intelligent Environment.

3. METHODS

In this section a description of the techniques selected for
comparison is provided. Special attention will be paid to
those methods that are relatively new or have been adapted
in some way to the problem at hand. All the techniques
will be run over data collected by monitoring a user in the
iDorm over a period of time.

The first selected method is called AOFIS,12 a two phase
unsupervised data-driven one-pass approach for extracting
fuzzy rules and membership functions from data that has
shown to be adequate for the control of the devices of
the target environment. We will pay special attention to
this technique later. Let’s say for the time being that this

If xl is A1 AND � � � AND xn is An

THEN y1 is B1 AND � � � ym is Bm

x1� � � � � xn : Input Variables
y1� � � � � ym : Output Variables
A1� � � � � An : Labels for Input
B1� � � � � Bm : Labels for Output

Fig. 2. Multi-input/multi-output rule format.

technique extracts from the data a set of rules represented
in a multi-input/multi-output format, where all the sampled
inputs and outputs are included in each rule and joined by
means of the AND connective in both the antecedent and
consequent parts of the rules (see Fig. 2).

We have selected as a second technique Genetic Algo-
rithms (GA),13�14 a popular method used over the last
decade to learn or tune fuzzy rule based systems.10 We
have applied a modified version of a state of the art
approach15 in order to learn both fuzzy rules and member-
ship functions for the FLC. We have considered a multi-
input/multi-output format for the representation of the
rules like that used in AOFIS (see Fig. 2).

Going deeply into the application of genetic algorithms
to the generation of FLC for the agent, we have applied
a previously used technique16 based on Genetic Program-
ming (a Genetic Algorithm Program, GA-P).17 A remark-
able characteristic of this approach is that the evolution
is based on similar principles than those employed in the
GA-based approach, but a different format and represen-
tation for the rules, described next, is used. This way we
are able to compare not only methods for the generation
of controllers but also rule formats.

Besides the GA-P-based technique, we have applied
simulated annealing optimization principles to evolve the
same structures as that used in GA-P, applying so a SA-P18

technique to learn the FLC for the agent. The idea is to
check if the evolutive scheme used in the GA-P approach
can be improved with other techniques.

We have also compared the performance of these tech-
niques with ANFIS,11 a well known method for the extrac-
tion of fuzzy controllers from data.

Lastly, we have considered a data-based learning tech-
nique based on MLP neural networks19 in order to know if
a different internal structure for the agent controller than
that based on FLC could be of interest.

3.1. AOFIS

The Adaptive Online Fuzzy Inference System (AOFIS)12

technique is an unsupervised data-driven one-pass
approach for extracting fuzzy rules and membership func-
tions from data. Moreover, this technique is capable of
incrementally adapting an initially provided/learnt rule
base online as new data samples are provided. AOFIS has
been previously proposed and tested for the control of
intelligent environments like the proposed in this paper,
showing good performance.
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Fig. 3. Flow diagram showing the phases of AOFIS.

Besides an initial data gathering phase, AOFIS com-
prises of three fundamental phases (see Fig. 3):

(1) Fuzzy membership function extraction. AOFIS
begins by categorizing the accumulated input/out put data
into a set of fuzzy membership functions which quantify
the raw crisp values of the inputs and outputs into lin-
guistic labels such as ‘normal,’ ‘low,’ or ‘high.’ A Dou-
ble Clustering approach20 combining Fuzzy-C-Means and
hierarchical clustering is used for extracting gaussian fuzzy
membership functions from data. AOFIS needs in advance
a parameter specifying the maximum overlap allowed
between two adjacent fuzzy sets.

(2) Fuzzy rule extraction. The defined set of member-
ship functions is combined with the existing data to extract
fuzzy rules. This process is based on an Enhanced version
of the Mendel Wang (MW) method,21 a one pass technique
for extracting fuzzy rules from data. As a consequence of
the applied approach, AOFIS extracts a set of multi-input
multi-output rules (see Fig. 2) which describe the relation-
ship among every input and output variable.

(3) Online adaptation. AOFIS can also be used to incre-
mentally adapt the fuzzy controller rule base when new
data instances are provided. If the new data instance enters
a conflict with rules in the rule base (controller actions
contradict the expected actions specified in the new data
instance), fired rules are selected and their consequents are
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Fig. 4. Representation used in the GA-based approach.

replaced with the consequent membership functions that
give the highest membership values to the values speci-
fied in the new data instance. If the behavior dictated by
the new data instance is not enclosed in rules in the rule
base (none of the rules fire using the combination of inputs
included in the data instance), AOFIS generates new rules
using the process mentioned in the second phase and adds
them to the rule base.

3.2. GA-Based Approach

Genetic algorithms13�14 are iterative stochastic optimiza-
tion methods premised on the evolutionary ideas of natural
selection and genetics. They emulate evolutionary pro-
cesses in natural systems, specifically those that follow the
principles of survival of the fittest.

The GA used in this paper is based on an adapted ver-
sion of a Pittsburgh-based GA presented in Ref. [15] that
would learn both the membership function parameters and
rules to form the FLC.

This GA used multi-chromosome representation (see
Fig. 4). Numerical vectors represent the numerical param-
eters of the membership functions (one vector for centers
and one for standard deviations as we have chosen to use
gaussian membership functions). This way the GA learns
the number of rules and the rules itself. Each single rule is
represented by means of a vector containing the linguistic
labels associated with each input and output in the rule. As
we are using the multi-input/multi-output format employed
in AOFIS, no linguistic label can be empty.

The GA evolves the membership functions and rules
together. It uses a modified two phase crossover operator
which will affect the parameters for membership functions
or the rules based on predefined probabilities. Classical
real value based crossover is applied to evolve the numer-
ical coefficients. One point crossover operator is applied
to evolve rules with the single condition that a valid set of
rules is generated after its application (the variable length
chromosome generated after the application of the operator
must contain an integer number of rules; we do not admit
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Algorithm GA/GA-P is

Generate random population

Calculate fitness

While not finished do

Generate a new population by 

Selecting individuals from the actual population

Applying genetic operators to generate new individuals

Calculate fitness for the new population

Replace the current population with the new population

EWhile

Result is the best individual found during the evolution

EAlgorithm

Fig. 5. GA/GA-P pseudocode.

the operator to generate incomplete rules into the chromo-
some). Mutation operators work in a similar manner. They
are applied over the centers, spreads or rule vectors based
on predefined probabilities. In all cases, the mutation is
defined as the crossover between the selected individual
and a randomly generated one.

We used the classical generational approach (see Fig. 5)
for the evolution with a selection process based on tourna-
ment selection. We run the genetic algorithm for a limited
number of generations and we select the best individual
found during the evolution as the result of the search
process.

3.3. GA-P-Based Approach

GA-P17 algorithms are based on Genetic Programming
(GP) algorithms.22�23 In GP individuals to be evolved are
usually represented by a tree, where the leaf nodes (ter-
minals) usually represent input variables and the internal
nodes represent functions that transform the input infor-
mation to provide the output. The problem arises when the
individual is dependant on numerical coefficients, which
must be learnt in the canonical approach by complex oper-
ations with the functions and the terminals (see Fig. 6,
left). An initial attempt to solve it is to include terminals
containing numerical parameters and employing special
operators to evolve such special kind of terminals22 (see
Fig. 6, centre).
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Fig. 6. Different representation in GP/GA-P.

GA-P algorithms17 mix ideas from genetic algorithms
and genetic programming. Individuals in GA-P are com-
posed of two parts: a tree and a vector of numerical param-
eters (see Fig. 6, right). Terminals never store numerical
values. When needed, they store linguistic identifiers that
act as pointers to positions in the vector of numerical
parameters. Initially applied in symbolic regression prob-
lems, GA-P has shown to surpass GP when the structure to
evolve is dependant of a relatively high number of numer-
ical coefficients.

In GA-P, both the tree and the vector of coefficients
are evolved during the process in the basis of the usual
genetic operators (reproduction, crossover, and mutation).
This way, a parallel search in both the structural and para-
metrical components is made.

We have adapted the canonical GA-P to the generation
of fuzzy logic controllers suited for our purposes. On the
basis of previous work,16 a grammar (see Fig. 7) has been
declared to define the genotype of the controller for a sin-
gle output. It is defined from a set of M inputs (m analog
inputs and m′ binary inputs). From our purposes, the con-
troller will be a valid chain from the context free grammar
defined by the shown production rules, where a1� � � � � am

are analog inputs, d1� � � � � dm′ are binary inputs, and p is
the number of linguistic labels for any analog variable,
either input or output (a generalization that could allow to
specify a different number of linguistic partitions for differ-
ent variables is straightforward. In this work we will define
the same number of partition for every analog variable).

As shown, fuzzy membership functions for analog input
variables are represented by gaussians, taking the limits
(centre v_ak

i and spread s_ak
i ) from the CONSTANTS vec-

tor. Membership function for binary input variables are
defined by means of crisp functions zero () or one (), that
return a membership value of one if the associated input
variable takes the proper value.

Fuzzy membership functions for the outputs are defined
by singletons. If the output variable is binary, singletons
are not evolved taking the prefixed values 0.25 and 0.75.
If the output variable is analog, singletons are included
in the CONSTANTS vector (kjo) and are evolved together
with the rest of numerical parameters.

J. Ubiquitous Computing and Intelligence 1, 153–162, 2007 157



Off-Line Generation of Fuzzy Logic Based Agents for an Intelligent Building Environment López et al.

CONTROLLER: if CONDITION then (y is 0.25)
if CONDITION then (y is 0.75) |

if CONDITION then (y is ko )
if CONDITION then (y is ko )
…
if CONDITION then (y is ko

p
)

CONDITION: ASSERT_a1

1

2

|... | ASSERT_am |
ASSERT_d1 |... | ASSERT_dm’ |
CONDITION OR CONDITION |
CONDITION AND CONDITION

ASSERT_ai: gaussian(ai, v_ai
1, s_ai

1
) |

...
gaussian(ai, v_ai

p
, s_ai

p
)

ASSERT_di: zero(di ) | one(di)

CONSTANTS: v_a1
1 ,…,v_a1

p, …, v_am
1 ,…,v_am

p ,

s_a1
1 ,…,s_a1

p , …, s_am
1 ,…,s_am

p ,

ko
1 , ko

2 , .., ko
p

Fig. 7. Grammar for the fuzzy logic controller of a single output.

The derivations of CONTROLLER used depend on the
class of the output variable. The first two have only sense
when the output variable is binary, and the rest are used
when evolving a controller for an output analog variable.

The FLC for the agent, possibly used to control more
than one output variable, will be composed of a controller
derived from the grammar for every output variable. They
all share the same membership functions described by the
parameters in the CONSTANTS vector, so sharing the
same definition for the linguistic labels, giving this way
the same linguistic sense to all the rules in the controller.

The implementation of an individual departing from the
grammar is straightforward. Figure 8 shows a high level
representation of a FLC. A controller is attached to every
output. Within these controllers, a branch is generated for
every partition of the output (as dictated by the production
rules in CONTROLLER), containing the rules that acti-
vate such partition of the output. These rules are composed
(as dictated by the production rules from CONDITION) of
AND-OR associations of either gaussian membership func-
tions attached to specific analog input variables or zero () or
one () crisp functions attached to binary input variables (as
shown in the grammar in the production rules ASSERT_).

The numerical value of the FLC for an output is calcu-
lated using the following equation:
∑p

j=1 wjk
j
o∑p

j=1 wj

� where

〈
wj is the activation value for branch j

kjo is the singleton value for partition j

Using this representation, it is straightforward to attach
linguistic labels to ASSERT_ derivations and so to input
variable values. For example, if you think about three
partition for analog input variable i (p = 3), gaussian
(ai�m_a1

i � s_a
1
i ) means ‘low,’ gaussian (ai�m_a2

i � s_a
2
i )

FLC

Controller
For output k

AND

OR

g(ai, v, s)

g(ai, v, s)

‘Low’ ‘High’

‘Medium ’

Controller
For output 1

CONSTANTS

g(ai, v, s)

Fig. 8. Representation of a controller derived from the grammar.

means ‘medium,’ and gaussian (ai�m_a3
i � s_a

3
i ) means

‘high.’ If you think about binary input variable j , zero (aj )
means OFF and one (aj ) means ON.

It is also straightforward to attach linguistic labels to
output variables. Labels (for instance ‘low,’ ‘medium,’ and
‘high’) are assigned to kjo values.

A highly relevant question for our analysis is to
empathize that not all the inputs need to be included in
the antecedent of one rule: it depends on the length of the
branch that is variable and on the causalities of the evo-
lution (terminals can be repeated and even contradictory).
It is also relevant that the number of rules to activate a
partition of an output depends on the number of OR oper-
ators included in the branch: the higher the number of OR
operators, the higher the number of rules (see Fig. 9).

It can be easily seen how we are using a completely dif-
ferent format for the rule base and for the rules themselves
than that proposed in the two former approaches: AOFIS
and GA-based.

We have applied the classical generational approach
for the evolution (see Fig. 5). Reproduction, crossover,

Rule:

If A is A1 AND B is B1 or C is C1

THEN O is k0

Is equivalent to:

If A is A1 AND B is B1

THEN O is k0

If C is C1

THEN O is k0

Fig. 9. The number of rules in GA-P/SA-P representation depends on
the number of OR operators.
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and mutation operators are applied to evolve the popu-
lation based on predefined probabilities of application.24

We apply subtree crossover for the rules and real value
based crossover for the numerical coefficients of the mem-
bership functions. We define mutation as the crossover of
an individual with a randomly generated one. We run the
algorithm for a predefined number of generations and we
select the best individual found during the evolution as the
result of the process.

3.4. SA-P-Based Approach

Simulated Annealing (SA)25 is a well known optimization
method based on an emulation of the way metals recrys-
talize in a process of annealing. It is basically an iterative
process where a solution is randomly modified (mutated in
the jargon) in each iteration. If the result of the mutation is
better than the current one, the new solution overwrites it
for the next iteration. If it is worse, it is usually discarded.
Nevertheless, an opportunity is given to such worse solu-
tions to overwrite the actual one, and then be used for
the next iteration, based on a probability that is usually
progressively reduced as the search goes on. The habitual
implementation of this procedure is based on a numerical
parameter known as temperature. Initialized to a specific
value, it is reduced as the iterations goes on using usually
an exponential policy. The probability of acceptance of a
worse solution than the current one depends on the actual
value of the temperature.

An hybridisation between simulated annealing and
genetic programming has been proposed in the literature
to apply the approach to the optimization of tree based
structures.18 The idea is to use the operator of muta-
tion proposed in GP under the SA scheme of optimiza-
tion. Also, when individuals are composed of a structural
component (usually a tree) and a parametric component
(usually a vector of parameters), the representation and
mutation operators proposed in GA-P can be applied under
simulated annealing evolution principles to produce the
hybrid SA-P algorithms.

In this paper, we have followed this approach to evolve
FLC for the iDorm. Details of the algorithm are the
same as those described for the GA-P (representation and
genetic operators are identical) but for the scheme of evo-
lution, based now on SA principles (see Fig. 10).

3.5. ANFIS and MLP Approaches

At last, we have compared the results of the previ-
ously described techniques with those obtained using
the well known ANFIS (Adaptive-Network-based Fuzzy
Inference Systems)11 and MLP (Multilayer Perceptron)
neural networks19 techniques. We are not paying attention
to these techniques in this paper as they are quite popular
and they have been applied as proposed in the canoni-
cal approaches, without any modification. Parameterization

Algorithm SA-P is
Generate random individual
Initialize temperature
While not finished do

Create new individual (mutate current individual)
Replace current individual with new individual if:

- It is best
- A random experiment function of temperature
returns true

Decrease temperature
EWhile
Result is the best individual found during the evolution

EAlgorithm

Fig. 10. SA-P pseudocode.

and details of their application will be given when neces-
sary in the experimental section.

4. EXPERIMENTAL RESULTS
AND DISCUSSION

In this section a detailed description and discussion of the
results of a set of unique experiments using real data col-
lected from a user inhabiting the iDorm for three consecu-
tive days is included. We begin describing data collection
and preparation processes, followed by the details of appli-
cation of each technique. The final subsections include
quantitative and qualitative analysis of the results.

4.1. Data Collection and Preparation

Data for the experiments is collected from the iDorm in
such a way that whenever the user changes actuator set-
tings a ‘snapshot’ of the current inputs (sensor states) and
the outputs (actuator states with the new altered values of
whichever actuators were adjusted by the user) is stored.
These ‘snapshots’ are accumulated over a period of time
(three days in the case of our experiments) so enough infor-
mation is provided to the technique about the user’s inter-
actions within the environment. The dataset obtained from
the iDorm during the monitoring phase was comprised of
408 instances.

Seven inputs (internal light level, external light level,
internal temperature, external temperature, chair pressure,
bed pressure, and time measured as a continuous input on
an hourly scale) and ten outputs (four variable intensity
spot lights, a desk and bed side lamps, window blinds,
a heater and two PC based applications comprising of a
word processing program and a media playing program)
were sampled for the experiments.

We have decided to use the ASRMSE value for com-
parison, calculated as follows: first, using the test sample,
we calculate for each output the RMSE (Root Mean
Square Error) between the values proposed by the learning
approach and the real values selected from the user
included in each data instance. In a second step, SRMSE
(Scaled Root Mean Square Error) is calculated, where
RMSE values are scaled to account for the different ranges
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of variation of the output variables. As a final step, all
the SRMSE for the ten outputs are averaged, giving the
ASRMSE value we are going to use for comparison.

In order to make the experiments as independent as pos-
sible of the data configuration, the 408 available samples
were randomized into six samples, and each of them was
then split into a training and test set consisting of 272
and 136 instances, respectively. Learning techniques were
independently applied using the data contained in the six
samples.

4.2. Configuration of the Experiments

AOFIS, GA, GA-P, and SA-P based approaches were
applied such that analog variables were partitioned into
three partitions, as it favours the linguistic interpretabil-
ity of solution permitting to divide such spaces into the
linguistic labels ‘low,’ ‘medium,’ and ‘high.’

AOFIS needs an extra parameter to specify the degree of
overlap allowed between adjacent fuzzy sets, which were
fixed at 0.5.12

The GA-based technique was run for 500 generations
involving a population of 500 individuals. Crossover and
mutation were applied with a probability 0.9 and 0.05,
respectively. They were applied over the rules, centers, or
standard deviation parts of the individuals after a random
experiment with a predefined probability of 0.5 for the
first and 0.25 for each of the numerical parameter parts.
Tournament selection involving five individuals was used
for each selection process. We have limited the number of
rules in each controller to 200.

The GA-P-based technique was also run 500 generations
involving again a population of 500 individuals. Probabil-
ities used for the genetic operators were 0.9 for crossover
and 0.05 for mutation. Both operators were applied over
the structure or numerical parts of the individuals with an
equal probability of 0.5 for each. Tournament selection
involving five individuals was also used for each selection
process. The maximum depth specified for each branch of
the rule structures was fixed at 5.

The SA-P based approach was run such that the num-
ber of structures evaluated was similar as in the GA-, and
GA-P-based approaches (about 250000), giving this way
similar opportunities to all the approaches to find good
controllers. The mutation operator affects the structural or
parametric components of the solution with an equal prob-
ability of 0.5. Initial temperature was fixed at 0.000001
and progressively reduced using a factor of 0.9999.

In ANFIS we used subtractive clustering to generate an
initial TSK-type fuzzy inference system. Back propaga-
tion was used to learn the premise parameters while least
square estimation was used to determine the consequent
parameters. An iteration of the learning procedure con-
sists of two parts where the first part propagates the input
patterns and estimates optimal consequent parameters
through an iterative least squares procedure. The second

part uses back propagation to modify the antecedent mem-
bership functions. The MLP back-propagation neural net-
work was set up using a single hidden layer.

ANFIS and MLP results were obtained after ten inde-
pendent experiments where the cluster radii and the num-
ber of hidden networks (unknown parameters in advance)
were varied respectively between 0.3 and 0.9 with a step
of 0.2 and 2 and 400 with a variable step.12 The best result
obtained was selected as representative of the performance
of the technique.

4.3. Analysis of Results

In the following subsection we will analyze and discuss the
results of the experiments in terms of several relevant fac-
tors such as the accuracy of each technique, the linguistic
interpretability of the obtained FLC and other particular-
ities such as the required speed of convergence or some
interesting features of particular approaches. We will use
the results of the first analysis (accuracy) to discard some
of the techniques for further analysis.

4.3.1. Accuracy

Figure 11 shows quantitative results of the compared tech-
niques, where the ASRMSE has been averaged over the
six sample partitions used.

We are going to take as a basis for comparison the
results obtained from AOFIS, a previously proposed tech-
nique that exhibited a good performance in the target
environment. We can see how the GA approach provides
remarkably worse results. But when GA-P is applied errors
are dramatically reduced.

GA-P evolution is not very different from GA evolution
(see Fig. 5): a population of rules and membership func-
tion parameters are evolved by means of genetic operators;
these operators are applied to population individuals in a
random fashion with a bias to the most fitted individuals;
etc. So, to explain the difference in the FLC performance
we must search in other directions. The main difference
among both approaches is the rule format. On the one
hand, GA searches for rules in the multi-input/multi-output
format used in AOFIS (every input and every output is
present in each rule). On the other hand, GA-P learns a

Fig. 11. ASRMSE for all the compared methods. Averaged results over
six sample partitions.
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set of rules for each partition of each output variable, but
not all the input variables are mandatory included in the
antecedents of such rules.

Moreover, the GA approach needs to learn the number
of rules by means of a concatenation of rules, whilst the
GA-P changes the number of rules by the use of the
OR connective in the antecedent. These features seem
to improve the GA-P search as it has more freedom for
searching the space of candidate FLC.

GA-P and AOFIS performances are similar, but errors
can still be reduced with the application of SA-P. It can be
explained as SA-P is more capable of exploring the search
space.

It can also be seen from the results (Fig. 11) how MLP
errors are in the higher level of all the tested approaches
while ANFIS is the most accurate approach.

In the basis of these results, we are going to limit the
following analysis to ANFIS, AOFIS, and SA-P. We will
not pay attention to GA as they have shown to be quite
inaccurate and to GA-P, as its accuracy has been improved
using SA-P, being very similar the foundations of both
techniques. We will neither pay attention to MLP, as the
motivation for comparing the results with this technique
was to contrast FLC with other structures for the agent,
showing quantitative results how MLP does not clearly
beat them and so accepting FLC as a good candidate for
the agent implementation.

4.3.2. Linguistic Interpretability

While quantitatively the most accurate approach, ANFIS
presents two relevant drawbacks from the linguistic inter-
pretability point of view that make it useless for our
purposes:
(i) ANFIS generates TSK FLC, where the consequent
parameters are represented as either linear functions of the
input variables or constant values, rather than linguistic
variables. Thus linguistic interpretation of consequents of
rules is not easy.
(ii) ANFIS only learns a multi-input single-output (MISO)
FLC. For the experiments described in this paper, ANFIS
was independently applied for each output variable and
therefore used different membership functions for repre-
senting the same linguistic labels in the rules generated
for each output. As a consequence, a sentence such as
“ExternalLightLevel is LOW” could mean different things
depending whether we are talking about the controller of
the ceiling spotlight or a desk lamp. Thus there is no
semantic consistency through the controllers for all the
outputs.

AOFIS, and SA-P-based technique learn rules in a
Multi-Input/Multi-Output Mamdani format which makes
it more suited to be understood by a human reader.
Nevertheless, the number of rules generated using AOFIS
is relatively high. While strongly dependant on the data
sample, we have obtained 155 rules for the 272 training

IF (BedPressure is ON) OR
(ExternalLightLevel is Low AND
InternalLightLevel is Medium) OR

(ExternalLightLevel is Low AND
ChairPressure is High)

THEN Light1 is Low

IF (ChairPressure is OFF AND
ExternalLightLevel is Low AND
InternalLightLevel is Medium)

THEN Light1 is Medium

IF (BedPressure is ON AND
ExternalTemperature is Low) OR

(ExternalLightLevel is low)
THEN Light1 is High

IF (BedPressure is ON) OR
(InternalLightLevel is Low) OR
(ExternalTemperature is Low)

THEN Blind is OFF (closed)

IF (ExternalLightLevel is Low)
THEN Blind is ON (Open)

Fig. 12. SA-P learnt rules for two outputs.

instances. This high number of rules can again seriously
handicap the rule base understanding. SA-P, on the
other hand, apart from being one of the most accurate
approaches, provides an easier to interpret set of rules.
As an example, we include in Figure 12 the rules for
two controllers (one binary-blind state- and one analog
output—an intensity variable light point-) extracted from
one of the runs of the SA-P. It can be seen how rules are
easy to read and (we think) they reflect a normal behavior
of a user when handling such devices.

4.3.3. Parallel Factors

Parallel but highly relevant aspects are:
(i) SA-P is slower than ANFIS, being AOFIS (a one pass
method) the fastest approach.
(ii) AOFIS is able to incrementally adapt the rule base on
line when necessary, while the other techniques can not
be easily applied to this task.

5. CONCLUSIONS

At this work we have tested several techniques for the
off-line generation of fuzzy controllers for an intelligent
environment, being AOFIS and SA-P the most adequate
approaches. Nevertheless, we have shown that there are
significant differences between them, and so further con-
siderations are necessary to settle which one is the best
technique.

AOFIS provides controllers that are quite good in terms
of accuracy at modeling the user behavior. It is a one
pass approach and so it learns FLC very fast. Rules
in AOFIS are Mamdani formatted. So, linguistic inter-
pretability could be possible as rules are expressed in
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human language. But actually the high number of rules
usually obtained using AOFIS makes it difficult to reach
such goal, being this the main drawback of the technique.

The SA-P-based approach seems to be a serious oppo-
nent, as linguistic interpretability of solutions is easier and
the accuracy of the learnt controllers is even better. But
SA-P is much slower than AOFIS, employing several min-
utes to converge in contrast to a few seconds necessary
to apply AOFIS. Nevertheless, the speed of convergence
would not be a problem if we focus the attention in the
offline generation of controllers: a few minutes to train
could be admissible. So, from this point of view, we could
settle that SA-P is the most adequate approach for the ini-
tial phase of off-line learning.

A different situation arises if we think about a method
to be used during the two phases of the cycle of life of
the agent: the initial learning phase and the subsequent
phase where online control and adaptation to changing
preferences is faced. In such situation, it is highly relevant
that AOFIS provides built in mechanisms to online adapt
the rule base when inconsistencies between the controller
decisions and the user desires are detected. The others,
including SA-P, do not. The use of SA-P to solve such cir-
cumstances could be to retrain the FLC using all the data
instances collected over time, making it useless as an alter-
native for online life-long learning in ambient intelligent
environments for questions of data storage and processing
power requirements.

As a conclusion, we can settle that AOFIS is the best
alternative to be used for online life-long learning and con-
trol in ambient intelligent environments. Nevertheless, a
potentially promising alternative could be to use SA-P to
initially learn the FLC in the first phase and then applying
similar concepts to that used in AOFIS to re-adapt FLC
over time during the online control. We defer these con-
siderations for future work.
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